Structured Prediction

I want to go through the Wikipedia series on Machine Learning and Data mining. Data mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems.

Date Created:
0 16

References



Notes


Structured prediction or structured output learning is an umbrella term for supervised machine learning techniques that involves predicting structured objects, rather than discrete or real values.

Similar to commonly used supervised learning techniques, structured prediction models are typically trained by means of observed data in which the predicted value is compared to the ground truth, and this is used to adjust the model parameters. Due to the complexity of the model and interrelations of predicted variables, the processes of model training and inference are often computationally infeasible, so approximate inference and learning methods are used.

  • Ground truth is information that is known to be real or true, provided by direct observation and measurement as opposed to information provided by inference.
  • Approximate inference methods make it possible to learn realistic models from big data by trading off computation time for accuracy, when exact learning and inference are computationally intractable.

An example application is the problem of translating a natural language sentence into a syntactic representation such as a parse tree. This can be seen as a structured prediction problem in which the structured output domain is the set of all possible parse trees. Structured prediction is used in a wide variety of domains including bioinformatics, nlp, speech recognition, and computer vision.

Parse Tree

A parse tree or parsing tree is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term syntax tree is more common.

Probabilistic graphical models form a large class of structured prediction models. In particular, Bayesian networks and random fields are popular.

  • A Bayesian network is a graphical model that represents the set of variables and their conditional dependencies via a directed acyclic graph (SAG).

Comments

You have to be logged in to add a comment

User Comments

Insert Math Markup

ESC
About Inserting Math Content
Display Style:

Embed News Content

ESC
About Embedding News Content

Embed Youtube Video

ESC
Embedding Youtube Videos

Embed TikTok Video

ESC
Embedding TikTok Videos

Embed X Post

ESC
Embedding X Posts

Embed Instagram Post

ESC
Embedding Instagram Posts

Insert Details Element

ESC

Example Output:

Summary Title
You will be able to insert content here after confirming the title of the <details> element.

Insert Table

ESC
Customization
Align:
Preview:

Insert Horizontal Rule

#000000

Preview:


View Content At Different Sizes

ESC

Edit Style of Block Nodes

ESC

Edit the background color, default text color, margin, padding, and border of block nodes. Editable block nodes include paragraphs, headers, and lists.

#ffffff
#000000

Edit Selected Cells

Change the background color, vertical align, and borders of the cells in the current selection.

#ffffff
Vertical Align:
Border
#000000
Border Style:

Edit Table

ESC
Customization:
Align:

Upload Lexical State

ESC

Upload a .lexical file. If the file type matches the type of the current editor, then a preview will be shown below the file input.

Upload 3D Object

ESC

Upload Jupyter Notebook

ESC

Upload a Jupyter notebook and embed the resulting HTML in the text editor.

Insert Custom HTML

ESC

Edit Image Background Color

ESC
#ffffff

Insert Columns Layout

ESC
Column Type:

Select Code Language

ESC
Select Coding Language

Insert Chart

ESC

Use the search box below

Upload Previous Version of Article State

ESC