Ontology Learning

I want to go through the Wikipedia series on Machine Learning and Data mining. Data mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems.

Date Created:
0 17

References



Notes


Ontology learning (ontology extraction, ontology augmentation generation, ontology generation, or ontology acquisition) is the automatic or semi-automatic creation of ontologies, including extracting the corresponding domain's terms and the relationships between the concepts that these terms represent from a corpus of natural language text, and encoding them with an ontology language for easy retrieval. As building ontologies manually is extremely labor-intensive and time-consuming, there is great motivation to automate the process.

Typically, the process starts by extracting terms and concepts or noun phrases from plain text using linguistic processors such as part-of-speech tagging and phrase chunking. Then statistical or symbolic techniques are used to extract relation signatures, often based on pattern-based or definition-based hypernym extraction techniques.

Ontology learning (OL) is used to (semi-)automatically extract whole ontologies from natural language text. The process is usually split into the following eight tasks:

  1. Domain technology extraction - domain-specific terms are extracted, which are used in the following step to derive concepts.
  2. Concept discovery - Terms are grouped to meaning bearing units, which correspond to an abstraction of the world and therefore to concepts
  3. Concept hierarchy derivation - the OL system tries to arrange the extracted concepts in a taxonomic structure.
  4. Learning of non-taxonomic relations - relationships are extracted that do not express any sub- or supersumption.
  5. Rule discovery - axioms (formal descriptions of concepts) are generated for the extracted concepts
  6. Ontology population - the ontology is augmented with instances of concepts and properties
  7. Concept hierarchy extension - the OL system tries to extend the taxonomic structure of an existing ontology with further concepts
  8. Frame and Event Detection - the OL system tries to extract complex relationships from text

Comments

You have to be logged in to add a comment

User Comments

Insert Math Markup

ESC
About Inserting Math Content
Display Style:

Embed News Content

ESC
About Embedding News Content

Embed Youtube Video

ESC
Embedding Youtube Videos

Embed TikTok Video

ESC
Embedding TikTok Videos

Embed X Post

ESC
Embedding X Posts

Embed Instagram Post

ESC
Embedding Instagram Posts

Insert Details Element

ESC

Example Output:

Summary Title
You will be able to insert content here after confirming the title of the <details> element.

Insert Table

ESC
Customization
Align:
Preview:

Insert Horizontal Rule

#000000

Preview:


View Content At Different Sizes

ESC

Edit Style of Block Nodes

ESC

Edit the background color, default text color, margin, padding, and border of block nodes. Editable block nodes include paragraphs, headers, and lists.

#ffffff
#000000

Edit Selected Cells

Change the background color, vertical align, and borders of the cells in the current selection.

#ffffff
Vertical Align:
Border
#000000
Border Style:

Edit Table

ESC
Customization:
Align:

Upload Lexical State

ESC

Upload a .lexical file. If the file type matches the type of the current editor, then a preview will be shown below the file input.

Upload 3D Object

ESC

Upload Jupyter Notebook

ESC

Upload a Jupyter notebook and embed the resulting HTML in the text editor.

Insert Custom HTML

ESC

Edit Image Background Color

ESC
#ffffff

Insert Columns Layout

ESC
Column Type:

Select Code Language

ESC
Select Coding Language

Insert Chart

ESC

Use the search box below

Upload Previous Version of Article State

ESC