Depth estimation is the task of measuring the distance of each pixel relative to the camera. Depth is extracted from either monocular (single) or stereo (multiple views of a scene) images. Traditional methods use multi-view geometry to find the relationship between the images.
Notes
Monocular Depth Estimation is the task of estimating the depth value (distance relative to the camera) of each pixel given a single (monocular) RGB image. This challenging task is a key prerequisite for determining scene understanding for applications such as 3D scene reconstruction, autonomous driving, and AR. State-of-the-art methods usually fall into one of two categories: designing a complex network that is powerful enough to directly regress the depth map, or splitting the inputs into bins or windows to reduce computational complexity. The most popular benchmarks are the KITTI and NYUv2 dataset.
Monocular depth estimation is a computer vision task that involves predicting the depth information of a scene from a single image. In other words, it is the process of estimating distance of objects in a scene from a single camera viewpoint.
Monocular depth estimation has various applications:
3D reconstruction
augmented reality
autonomous driving
robotics
It can be affected by factors such as lighting, conditions, occlusion, and texture.
Two main depth estimation categories:
Absolute depth estimation: This task variant aims to provide exact depth measurements from the camera. The term is used interchangeably with metric depth estimation, where depth is provided in precise measurements in meters or feet.
Relative depth estimation: Relative depth estimation aims to predict the depth order of objects or points in a scene without proving the precise measurements.
Are you sure you want to delete this article section? You can not undo this change.
Add a Comment
Annotate Article
Share Article
Successfully copied article URL to clipboard!
Something went wrong copying the article URL to the clipboard.
Successfully copied editor state to clipboard!
A previous, saved version of this article is saved. To compare the current version of the article with the previous version - or to replace the current version with the saved version - click the icon above the text editor.
Successfully copied URL to clipboard!
Copied code to clipboard.
Copied TeX code to clipboard.
Uploaded file must be an image of type .jpeg, .jpg, .png, .webp, .gif, .bmp, or .svg.
Image Size must be less than 5MB.
Uploaded file must be an image of type jpeg, jpg, png, webp, avif, tiff, or svg.
Something went wrong uploading the image to the database. Try reloading the page.
The maximum number of images you can upload is 30.
There was an error taking an image using the device's camera. Try uploading an image instead.
Uploaded file must be an audio file.
Audio file must be an audio file of type .m4a, .flac, .mp3, .mp4, .wav, .wma, .aac, .webm, or .mpeg.
Audio file must be less than 300 MB in size.
Something went wrong uploading the audio file. Try reloading the page.
The maximum number of audio files you can upload is 10.
There was an error capturing an audio recording using the device's microphone. Try uploading an audio recording or video instead.
Uploaded file must be an video file.
Video file must be an audio file of type .mp4, .mov, .avi, .wmv, .avchd, .webm, or .flv.
Video file must be less than 300 MB in size.
Something went wrong uploading the video file. Try reloading the page.
The maximum number of video files you can upload is 10.
There was an error taking a video using the device's camera / microphone. Try uploading a video instead.
Comments
You have to be logged in to add a comment
User Comments
There are currently no comments for this article.