Karpathy: building micrograd

Learning more about neural networks and how PyTorch and TensorFlow actually implement autodiff. I was looking into the PyTorch and TensorFlow code and got confused about some of what I saw, so I am watching these videos in the hope that I will understand it more.

1 114

References

import math 
import numpy as np
import matplotlib.pyplot as plt 
%matplotlib inline 
def f(x):
    return 3*x**2 - 4*x + 5 
print(f(3.0))
xs = np.arange(-5,5,0.25)
ys = f(xs)
plt.plot(xs,ys)
h=0.001
x=2/3
print("Derivative:",(f(x+h)-f(x))/h)
a= 2.0 
b = -3.0
c = 10.0 
d = a*b + c 
print(d)
h =  0.001 
# inputs 
a= 2.0 
b = -3.0
c = 10.0
d1 = a*b +c 
a += h 
d2 = a*b + c 
print('d1',d1)
print('d2',d2)
print('slope',(d2-d1)/h)
out[2]

20.0
Derivative: 0.0029999999995311555
4.0
d1 4.0
d2 3.997
slope -3.0000000000001137

Jupyter Notebook Image

<Figure size 640x480 with 1 Axes>

class Value:
  
  def __init__(self, data, _children=(), _op='', label=''):
    self.data = data
    self.grad = 0.0
    self._backward = lambda: None
    self._prev = set(_children)
    self._op = _op
    self.label = label

  def __repr__(self):
    return f"Value(data={self.data})"
  
  def __add__(self, other):
    other = other if isinstance(other, Value) else Value(other)
    out = Value(self.data + other.data, (self, other), '+')
    
    def _backward():
      self.grad += 1.0 * out.grad
      other.grad += 1.0 * out.grad
    out._backward = _backward
    
    return out

  def __mul__(self, other):
    other = other if isinstance(other, Value) else Value(other)
    out = Value(self.data * other.data, (self, other), '*')
    
    def _backward():
      self.grad += other.data * out.grad
      other.grad += self.data * out.grad
    out._backward = _backward
      
    return out
  
  def __pow__(self, other):
    assert isinstance(other, (int, float)), "only supporting int/float powers for now"
    out = Value(self.data**other, (self,), f'**{other}')

    def _backward():
        self.grad += other * (self.data ** (other - 1)) * out.grad
    out._backward = _backward

    return out
  
  def __rmul__(self, other): # other * self
    return self * other

  def __truediv__(self, other): # self / other
    return self * other**-1

  def __neg__(self): # -self
    return self * -1

  def __sub__(self, other): # self - other
    return self + (-other)

  def __radd__(self, other): # other + self
    return self + other

  def tanh(self):
    x = self.data
    t = (math.exp(2*x) - 1)/(math.exp(2*x) + 1)
    out = Value(t, (self, ), 'tanh')
    
    def _backward():
      self.grad += (1 - t**2) * out.grad
    out._backward = _backward
    
    return out
  
  def exp(self):
    x = self.data
    out = Value(math.exp(x), (self, ), 'exp')
    
    def _backward():
      self.grad += out.data * out.grad # NOTE: in the video I incorrectly used = instead of +=. Fixed here.
    out._backward = _backward
    
    return out
  
  
  def backward(self):
    
    topo = []
    visited = set()
    def build_topo(v):
      if v not in visited:
        visited.add(v)
        for child in v._prev:
          build_topo(child)
        topo.append(v)
    build_topo(self)
    
    self.grad = 1.0
    for node in reversed(topo):
      node._backward()
out[3]
print(d._prev,d._op)
from graphviz import Digraph 
def trace(root):
    # Builds a set of all nodes and edges in a graph 
    nodes, edges = set(), set()
    def build(v):
        if v not in nodes:
            nodes.add(v)
            for child in v._prev:
                edges.add((child,v))
                build(child)
    build(root)
    return nodes, edges
def draw_dot(root):
    dot = Digraph(format="svg", graph_attr={ "rankdir": "LR"}) # LR = Left to Right 
    nodes, edges = trace(root)
    for n in nodes:
        uid = str(id(n))
        # For any value in the graph, create a rectangular ("record") node for it 
        dot.node(name=uid,label="{ %s | data %.4f | grad %.4f }" % (n.label, n.data, n.grad ),shape="record")
        if n._op:
            # If this value is a result of some operation, create an op node for it 
            dot.node(name=uid+n._op,label=n._op)
            # and connect this node to it 
            dot.edge(uid+n._op,uid)
    for n1, n2 in edges:
        # connect n1 to the op node of n2
        dot.edge(str(id(n1)),str(id(n2)) + n2._op)
    return dot 
out[4]

{Value(data=10.0), Value(data=-6.0)} +

draw_dot(L)
out[5]

<graphviz.graphs.Digraph at 0x1fdea8cdb50>

# inputs x1,x2
x1 = Value(2.0, label='x1')
x2 = Value(0.0, label='x2')
# weights w1,w2
w1 = Value(-3.0, label='w1')
w2 = Value(1.0, label='w2')
# bias of the neuron
b = Value(6.8813735870195432, label='b')
# x1*w1 + x2*w2 + b
x1w1 = x1*w1; x1w1.label = 'x1*w1'
x2w2 = x2*w2; x2w2.label = 'x2*w2'
x1w1x2w2 = x1w1 + x2w2; x1w1x2w2.label = 'x1*w1 + x2*w2'
n = x1w1x2w2 + b; n.label = 'n'
o = n.tanh(); o.label = 'o'
o.backward()
out[6]
draw_dot(o)
out[7]

<graphviz.graphs.Digraph at 0x1fdeac63210>

# inputs x1,x2
x1 = Value(2.0, label='x1')
x2 = Value(0.0, label='x2')
# weights w1,w2
w1 = Value(-3.0, label='w1')
w2 = Value(1.0, label='w2')
# bias of the neuron
b = Value(6.8813735870195432, label='b')
# x1*w1 + x2*w2 + b
x1w1 = x1*w1; x1w1.label = 'x1*w1'
x2w2 = x2*w2; x2w2.label = 'x2*w2'
x1w1x2w2 = x1w1 + x2w2; x1w1x2w2.label = 'x1*w1 + x2*w2'
n = x1w1x2w2 + b; n.label = 'n'
# ----
e = (2*n).exp()
o = (e - 1) / (e + 1)
# ----
o.label = 'o'
o.backward()
draw_dot(o)
out[8]

<graphviz.graphs.Digraph at 0x1fdeac0e890>

import torch
out[9]
x1 = torch.Tensor([2.0]).double()                ; x1.requires_grad = True
x2 = torch.Tensor([0.0]).double()                ; x2.requires_grad = True
w1 = torch.Tensor([-3.0]).double()               ; w1.requires_grad = True
w2 = torch.Tensor([1.0]).double()                ; w2.requires_grad = True
b = torch.Tensor([6.8813735870195432]).double()  ; b.requires_grad = True
n = x1*w1 + x2*w2 + b
o = torch.tanh(n)

print(o.data.item())
o.backward()

print('---')
print('x2', x2.grad.item())
print('w2', w2.grad.item())
print('x1', x1.grad.item())
print('w1', w1.grad.item())
out[10]

0.7071066904050358
---
x2 0.5000001283844369
w2 0.0
x1 -1.5000003851533106
w1 1.0000002567688737

import random
class Neuron:
  
  def __init__(self, nin):
    self.w = [Value(random.uniform(-1,1)) for _ in range(nin)]
    self.b = Value(random.uniform(-1,1))
  
  def __call__(self, x):
    # w * x + b
    act = sum((wi*xi for wi, xi in zip(self.w, x)), self.b)
    out = act.tanh()
    return out
  
  def parameters(self):
    return self.w + [self.b]

class Layer:
  
  def __init__(self, nin, nout):
    self.neurons = [Neuron(nin) for _ in range(nout)]
  
  def __call__(self, x):
    outs = [n(x) for n in self.neurons]
    return outs[0] if len(outs) == 1 else outs
  
  def parameters(self):
    return [p for neuron in self.neurons for p in neuron.parameters()]

class MLP:
  
  def __init__(self, nin, nouts):
    sz = [nin] + nouts
    self.layers = [Layer(sz[i], sz[i+1]) for i in range(len(nouts))]
  
  def __call__(self, x):
    for layer in self.layers:
      x = layer(x)
    return x
  
  def parameters(self):
    return [p for layer in self.layers for p in layer.parameters()]
out[11]
x = [2.0, 3.0, -1.0]
n = MLP(3, [4, 4, 1])
n(x)
out[12]

Value(data=-0.9554946043526819)

xs = [
  [2.0, 3.0, -1.0],
  [3.0, -1.0, 0.5],
  [0.5, 1.0, 1.0],
  [1.0, 1.0, -1.0],
]
ys = [1.0, -1.0, -1.0, 1.0] # desired targets
out[13]
for k in range(20):
  
  # forward pass
  ypred = [n(x) for x in xs]
  loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))
  
  # backward pass
  for p in n.parameters():
    p.grad = 0.0
  loss.backward()
  
  # update
  for p in n.parameters():
    p.data += -0.1 * p.grad
  
  print(k, loss.data)
  
out[14]

0 7.67552222138637
1 7.450091029613591
2 6.783693295817814
3 4.352168860924874
4 3.6430582368697917
5 2.987307950937402
6 2.858759712706782
7 2.4382564409118244
8 2.1322519390971193
9 1.617683409345122
10 1.2976231577093384
11 2.338236162196535
12 3.284712983214373
13 0.35098980535647045
14 0.08951349034140584
15 0.07908732693630652
16 0.07082676242677266
17 0.06411750461492344
18 0.05855858026850322
19 0.05387677636298632

ypred
out[15]

[Value(data=0.8846284039663241),

Value(data=-0.9391144640696596),

Value(data=-0.8542497004540471),

Value(data=0.8750361136633112)]

out[16]

You can read more about how comments are sorted in this blog post.

User Comments