n_iterations: 3
n_required_iterations: 3
n_possible_iterations: 3
min_resources_: 5555
max_resources_: 50000
aggressive_elimination: False
factor: 3
----------
iter: 0
n_candidates: 12
n_resources: 5555
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[CV 1/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.730, test=0.716) total time= 0.6s
[CV 2/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.734, test=0.713) total time= 0.4s
[CV 3/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.703, test=0.690) total time= 0.5s
[CV 4/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.707, test=0.685) total time= 0.5s
[CV 5/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.744, test=0.746) total time= 0.4s
[CV 1/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.732, test=0.721) total time= 1.0s
[CV 2/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.727, test=0.712) total time= 1.0s
[CV 3/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.731, test=0.705) total time= 0.9s
[CV 4/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.735, test=0.716) total time= 0.9s
[CV 5/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.727, test=0.726) total time= 1.0s
[CV 1/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.796, test=0.795) total time= 0.6s
[CV 2/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.810, test=0.779) total time= 0.6s
[CV 3/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.788, test=0.762) total time= 0.6s
[CV 4/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.804, test=0.765) total time= 0.6s
[CV 5/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.805, test=0.788) total time= 0.6s
[CV 1/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.802, test=0.808) total time= 1.1s
[CV 2/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.801, test=0.778) total time= 1.1s
[CV 3/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.778, test=0.749) total time= 1.1s
[CV 4/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.799, test=0.774) total time= 1.1s
[CV 5/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.811, test=0.802) total time= 1.1s
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.963, test=0.913) total time= 0.9s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.967, test=0.905) total time= 0.8s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.964, test=0.910) total time= 0.9s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.963, test=0.878) total time= 0.9s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.962, test=0.897) total time= 0.9s
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.965, test=0.917) total time= 1.7s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.966, test=0.904) total time= 1.6s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.965, test=0.904) total time= 1.7s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.964, test=0.886) total time= 1.7s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.962, test=0.893) total time= 1.8s
[CV 1/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.716, test=0.706) total time= 0.4s
[CV 2/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.718, test=0.696) total time= 0.5s
[CV 3/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.710, test=0.683) total time= 0.5s
[CV 4/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.694, test=0.670) total time= 0.5s
[CV 5/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.700, test=0.698) total time= 0.5s
[CV 1/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.711, test=0.702) total time= 0.9s
[CV 2/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.732, test=0.718) total time= 1.0s
[CV 3/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.710, test=0.682) total time= 0.9s
[CV 4/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.712, test=0.687) total time= 0.9s
[CV 5/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.730, test=0.727) total time= 0.9s
[CV 1/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.791, test=0.783) total time= 0.5s
[CV 2/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.801, test=0.778) total time= 0.6s
[CV 3/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.784, test=0.738) total time= 0.6s
[CV 4/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.786, test=0.761) total time= 0.5s
[CV 5/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.796, test=0.784) total time= 0.5s
[CV 1/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.800, test=0.788) total time= 1.1s
[CV 2/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.812, test=0.782) total time= 1.0s
[CV 3/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.781, test=0.747) total time= 1.0s
[CV 4/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.791, test=0.769) total time= 1.1s
[CV 5/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.799, test=0.783) total time= 1.1s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.967, test=0.915) total time= 0.9s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.970, test=0.909) total time= 0.9s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.965, test=0.908) total time= 0.9s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.969, test=0.886) total time= 0.9s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.967, test=0.901) total time= 0.9s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.966, test=0.914) total time= 2.0s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.971, test=0.905) total time= 1.8s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.967, test=0.906) total time= 1.8s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.968, test=0.887) total time= 1.8s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.968, test=0.904) total time= 1.8s
----------
iter: 1
n_candidates: 4
n_resources: 16665
Fitting 5 folds for each of 4 candidates, totalling 20 fits
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.933, test=0.914) total time= 6.2s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.938, test=0.903) total time= 6.3s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.942, test=0.914) total time= 6.1s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.942, test=0.905) total time= 6.3s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.943, test=0.909) total time= 6.7s
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.932, test=0.910) total time= 3.3s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.933, test=0.895) total time= 3.4s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.939, test=0.913) total time= 3.5s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.938, test=0.904) total time= 3.4s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.940, test=0.901) total time= 3.7s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.934, test=0.914) total time= 8.3s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.940, test=0.899) total time= 8.1s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.943, test=0.916) total time= 6.2s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.942, test=0.905) total time= 7.0s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.944, test=0.907) total time= 6.5s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.931, test=0.911) total time= 3.6s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.935, test=0.896) total time= 3.2s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.939, test=0.912) total time= 3.4s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.940, test=0.905) total time= 3.3s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.942, test=0.910) total time= 3.1s
----------
iter: 2
n_candidates: 2
n_resources: 49995
Fitting 5 folds for each of 2 candidates, totalling 10 fits
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.922, test=0.917) total time= 22.7s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.922, test=0.911) total time= 20.9s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.924, test=0.911) total time= 21.6s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.924, test=0.912) total time= 22.0s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.923, test=0.912) total time= 22.3s
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.923, test=0.919) total time= 22.9s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.923, test=0.913) total time= 23.6s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.922, test=0.913) total time= 23.1s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.925, test=0.908) total time= 21.0s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.924, test=0.910) total time= 20.4s
n_iterations: 3
n_required_iterations: 3
n_possible_iterations: 3
min_resources_: 5555
max_resources_: 50000
aggressive_elimination: False
factor: 3
----------
iter: 0
n_candidates: 12
n_resources: 5555
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[CV 1/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.757, test=0.715) total time= 0.6s
[CV 2/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.752, test=0.739) total time= 0.6s
[CV 3/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.774, test=0.743) total time= 0.5s
[CV 4/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.736, test=0.717) total time= 0.5s
[CV 5/5] END criterion=gini, max_depth=3, n_estimators=100;, score=(train=0.763, test=0.734) total time= 0.5s
[CV 1/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.750, test=0.713) total time= 1.2s
[CV 2/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.753, test=0.741) total time= 1.2s
[CV 3/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.766, test=0.740) total time= 1.2s
[CV 4/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.744, test=0.738) total time= 1.1s
[CV 5/5] END criterion=gini, max_depth=3, n_estimators=200;, score=(train=0.761, test=0.743) total time= 1.2s
[CV 1/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.823, test=0.793) total time= 0.7s
[CV 2/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.819, test=0.788) total time= 0.7s
[CV 3/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.831, test=0.796) total time= 0.7s
[CV 4/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.826, test=0.807) total time= 0.7s
[CV 5/5] END criterion=gini, max_depth=4, n_estimators=100;, score=(train=0.830, test=0.810) total time= 0.7s
[CV 1/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.829, test=0.793) total time= 1.4s
[CV 2/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.827, test=0.800) total time= 1.4s
[CV 3/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.844, test=0.815) total time= 1.5s
[CV 4/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.828, test=0.807) total time= 1.4s
[CV 5/5] END criterion=gini, max_depth=4, n_estimators=200;, score=(train=0.838, test=0.814) total time= 1.4s
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.978, test=0.905) total time= 1.3s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.976, test=0.911) total time= 1.3s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.974, test=0.909) total time= 1.2s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.971, test=0.901) total time= 1.2s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.977, test=0.904) total time= 1.2s
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.978, test=0.905) total time= 2.5s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.977, test=0.914) total time= 2.5s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.976, test=0.911) total time= 2.6s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.974, test=0.905) total time= 2.5s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.975, test=0.912) total time= 2.5s
[CV 1/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.727, test=0.713) total time= 0.8s
[CV 2/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.726, test=0.722) total time= 0.8s
[CV 3/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.734, test=0.711) total time= 0.8s
[CV 4/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.733, test=0.718) total time= 0.8s
[CV 5/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=(train=0.761, test=0.746) total time= 0.8s
[CV 1/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.744, test=0.705) total time= 1.6s
[CV 2/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.755, test=0.739) total time= 1.6s
[CV 3/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.748, test=0.729) total time= 1.6s
[CV 4/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.727, test=0.708) total time= 1.6s
[CV 5/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=(train=0.751, test=0.731) total time= 1.6s
[CV 1/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.813, test=0.787) total time= 1.0s
[CV 2/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.818, test=0.797) total time= 1.0s
[CV 3/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.818, test=0.789) total time= 1.0s
[CV 4/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.813, test=0.788) total time= 1.0s
[CV 5/5] END criterion=entropy, max_depth=4, n_estimators=100;, score=(train=0.826, test=0.793) total time= 1.0s
[CV 1/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.810, test=0.781) total time= 2.1s
[CV 2/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.819, test=0.801) total time= 2.1s
[CV 3/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.829, test=0.798) total time= 2.1s
[CV 4/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.821, test=0.809) total time= 2.1s
[CV 5/5] END criterion=entropy, max_depth=4, n_estimators=200;, score=(train=0.841, test=0.811) total time= 2.1s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.982, test=0.915) total time= 2.0s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.980, test=0.908) total time= 2.0s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.981, test=0.912) total time= 2.0s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.977, test=0.905) total time= 2.0s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.984, test=0.915) total time= 2.0s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.984, test=0.907) total time= 4.0s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.983, test=0.914) total time= 4.0s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.982, test=0.914) total time= 4.0s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.978, test=0.907) total time= 4.0s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.982, test=0.915) total time= 4.1s
----------
iter: 1
n_candidates: 4
n_resources: 16665
Fitting 5 folds for each of 4 candidates, totalling 20 fits
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.949, test=0.920) total time= 3.8s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.953, test=0.920) total time= 3.8s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.950, test=0.920) total time= 3.8s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.951, test=0.913) total time= 3.8s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=100;, score=(train=0.950, test=0.916) total time= 3.8s
[CV 1/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.953, test=0.918) total time= 7.4s
[CV 2/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.953, test=0.919) total time= 7.6s
[CV 3/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.951, test=0.921) total time= 7.6s
[CV 4/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.951, test=0.913) total time= 8.6s
[CV 5/5] END criterion=gini, max_depth=8, n_estimators=200;, score=(train=0.952, test=0.918) total time= 9.6s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.953, test=0.922) total time= 5.8s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.955, test=0.919) total time= 7.7s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.953, test=0.920) total time= 7.0s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.954, test=0.911) total time= 5.7s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.954, test=0.921) total time= 5.8s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.955, test=0.923) total time= 11.7s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.957, test=0.919) total time= 11.9s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.954, test=0.923) total time= 12.3s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.956, test=0.920) total time= 11.6s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.957, test=0.922) total time= 12.6s
----------
iter: 2
n_candidates: 2
n_resources: 49995
Fitting 5 folds for each of 2 candidates, totalling 10 fits
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.936, test=0.927) total time= 18.0s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.936, test=0.924) total time= 18.2s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.938, test=0.924) total time= 18.5s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.937, test=0.921) total time= 16.3s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=100;, score=(train=0.937, test=0.921) total time= 16.6s
[CV 1/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.937, test=0.928) total time= 33.8s
[CV 2/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.938, test=0.926) total time= 33.1s
[CV 3/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.938, test=0.923) total time= 32.3s
[CV 4/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.938, test=0.921) total time= 32.5s
[CV 5/5] END criterion=entropy, max_depth=8, n_estimators=200;, score=(train=0.938, test=0.921) total time= 34.5s
HalvingGridSearchCV(estimator=RandomForestClassifier(),
param_grid=[{'criterion': ['gini', 'entropy'],
'max_depth': [3, 4, 8],
'n_estimators': [100, 200]}],
verbose=3)